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Abstract 

This document describes a solution to a problem in the automatic content scoring of the 

multilingual character-by-character highlighting item type. This solution is language independent 

and represents a significant enhancement. This solution not only facilitates automatic scoring but 

plays an important role in clustering students’ responses; consequently, it has a nontrivial impact 

on the refinement of the items and/or their scoring guidelines. Furthermore, though designed for 

a specific problem, the proposed solution is general enough for any educational task that can be 

transformed into a sequential one. To name a few: It can be used for a set of actions expected 

from a student in simulations or learning trajectories as projected by a teacher, inside an 

intelligent tutoring system, or even in a game—or it can simply be used for a set of student 

clicks, button selections, or keyboard hits expected to reach a correct answer. This solution 

provides flexibility for existing automatic-scoring techniques and potentially could provide more 

flexibility if coupled with statistical data-mining techniques.  

Key words: multilingual automated scoring, large-scale assessment, sequential tasks, prefix-infix 

omission and insertion, multilingual character or grapheme sequences, sequence alignment and 

clustering, bio-NLP 
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There is renewed and growing interest from researchers and assessment organizations in 

developing types of items that are not multiple choice, whether for monolingual or multilingual 

assessment. However, it involves considerable time and money to score them manually and the 

existing methods for scoring automatically have limitations and need improvement. Therefore, 

we sought to look at a particular item type where we felt we could address these limitations and 

improve scoring accuracy, with the goal of a solution having broader applications. 

This paper is focused on a content-based, character-based highlighting item type with the 

following specification (Table 1 shows an example in English and Spanish). 

For each item, the test taker is given a stimulus and directions to highlight evidence in the 

stimulus to respond to a certain prompt. A response has a score of true (1) or false (0) or a set of 

score points that does not necessarily consist of a binary set. The content to be scored is 

represented in terms of a set of correct responses ranging from the minimum evidence expected 

to the maximum evidence. In the example, the minimum evidence is given in terms of four 

pieces: less than average, fell 4% between 2007-2009, fell 7% in 2004, and low due to 

unfavorable economic conditions. The maximum is a whole section that contains these four 

pieces. Seen as a set of characters, all correct responses are subsets of the maximum evidence. 

The complement of the maximum, given the character space to be the stimulus, is what is 

considered unacceptable.  

The scoring rules are propositional Boolean logical formulae defined using the minimum 

(these are called match predicates) and the unacceptable (mismatch predicates). A scoring rule is 

a combination of match predicates and mismatch predicates, where a match predicate, P, is true 

if and only if P is completely highlighted and a mismatch predicate, Q, is true if and only if any 

part of Q (any character) is highlighted. In other words, each scoring rule is a function from the 

set of combination of correct responses (the empty set is false obviously for this particular item 

type) to the set of score points using propositional logic such as the scoring rule in Table 1.  

The rule in the example says that a student’s response is true if the pieces of evidence (1), 

(2), and (4) are completely highlighted and nothing outside the maximum is highlighted or if the 

pieces of evidence (1), (3), and (4) are completely highlighted and nothing outside the maximum 

is highlighted. For a true response, a student can highlight up to a whole section that includes the 

four pieces of evidence defined in the minimum but nothing outside that section.  
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Table 1 

Example of a Highlighting Item 

Item 1 (English version) Item 1 (Spanish version) 

Stimulus:  
(a web page is given) 

Stimulus:  
(un página web es suministrada)  
 

Directions:  
Look at the web page. Highlight information 
on the page to answer the following question. 
 

Indicaciones:  
Lee la página web. Resalte la información en 
la página que responda la siguiente pregunta. 

Question:  
What does the web page say about the birth 
rate in USA in comparison to other 
countries? 
 

Pregunta:  
¿Qué dice la página web sobre la tasa de 
natalidad en USA en comparación con otros 
países?  
 

Minimum response: 
1. Less than average 
2. Fell 4% between 2007-2009 
3. Fell 7% since 2007 
4. Low due to unfavorable economic 

conditions 
 

Respuesta mínima:  
1. Más que el promedio  
2. Cayó 4% entre 2007-2009 
3. Cayó 7% desde 2007 
4. Bajo debido a condiciones 

económicas desfavorables 
 

Maximum response: 
Entire section starting with “How birth rate” 
and ending with “compared to others” 
 

Respuesta máxima:  
La sección comienza con “como el índice de 
natalidad” y termina con “comparada con 
otros” 
 

Scoring rule: 
1 if and only if (match(1) AND match(2) 
AND match(4)) OR (match(1) and match(3) 
AND match(4)) AND NOT mismatch(maxc); 
otherwise 0 where maxc is the complement of 
max (in terms of set theory) 

Regla de calificación: 
1 if and only if (match(1) AND match(2) 
AND match(4)) OR (match(1) and match(3) 
AND match(4)) AND NOT mismatch(maxc); 
otherwise 0 donde maxc es el complemento 
de max (en términos de la teoría de conjuntos 

In large-scale computer-based assessment, this item type is introduced and highlighting 

might be enabled one character at a time to allow for multilingual highlighting. In some cases, 

this item type is administered in 99 natural languages. This character-based highlighting implies 

that a test taker’s response can unintentionally either have additional characters at the beginning 

or end of a response or missing characters at the beginning, middle, or end.  
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For example, in the item illustrated in Table 1, a test taker might miss some characters 

and end up highlighting something like ss than average and fell 4% betwe 007-200. Thus, le is 

missing from (1) and en 2 …. 9 is missing from (2). A student might also highlight the section, 

“How birth rate … compared to others. How,” in which H, o, w were highlighted as additional 

characters beyond the maximum. A student can add characters at the beginning or end but not in 

the middle in this particular item type. Table 2 illustrates the various possibilities associated with 

this item type. We also name each possibility; the names are listed in the first column of Table 2. 

Table 2 

Omissions and Insertions 

Name Example 

Prefix-insertion By less than average 

Prefix-omission ss than average 

Infix-insertion N/A for this item type 

Infix-omission Fell 4% betw 2007-2009 

Suffix-insertion Less than average in comp

Suffix-omission Less than ave 

For each highlighted response, any combination of these possibilities could occur, similar 

to what could occur with a student’s written free-text response (except there is no transposition, 

i.e., no cases where two characters are interchanged—cieling versus ceiling—and no insertions 

in the middle).  

Being symbolic logic rules, as designed, scoring rules will score responses with 

additional or missing characters as 0 or false. However, test developers and human raters want to 

consider these responses true or with a score point 1. The question, obviously, is what would be 

the admissible maximum number of characters missing or inserted in each case. The answer to 

this question might vary from one item to another and one language to another. However, as 

shown later, it is not just about the number of characters.  

To summarize the first task that we face: 

For each item, given a set of correct responses and a set of unseen responses for a 

particular multilingual content-based, character-based highlighting item, the aim is to 

automatically score the unseen responses. We will refer to this task as prefix-infix-suffix 
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omissions and insertions (for this particular item type, as mentioned, there is no infix insertion, 

but the aim is a general solution that could work for this and other tasks). 

Additional scoring concerns exist. An initial look at the responses revealed that a 

nontrivial number of students within the same language or across languages responded in a very 

similar false manner. We noticed that this issue, in general, does not seem to be due to character-

by-character highlighting unintentional errors, as seen with the previous issue. Hence, in some 

cases it made us question the suitability of the wordings in the prompt or the stimulus (such as 

the passage), its interpretation by students, and the scoring rules, that is, why one response is 

considered true—or according to the scoring rules can be given a score point of 1—while 

another that seems to be logically suitable is considered false and can be given a score of 0 only. 

The issues are particularly complex and challenging when working with different languages, 

countries, cultures, and background knowledge.  

Hence, the second task or question that we need to consider is: Given the set of 

responses, can we inform the item developers and enhance the item design, including scoring 

rules developed through what we can automatically mine in the responses? An implicit subtask 

then is mining the responses automatically and finding similar responses in one language—and 

across languages if possible.  

In the following, we first describe a language-independent methodology to tackle the 

above two tasks. We then describe some related work. Next we outline the implementation and 

present the results of the implementation to items and responses written in four natural 

languages, showing (a) this is a nontrivial enhancement to existing automatic scoring and (b) this 

solution helps us cluster responses and further enhances the rubrics or the scoring rules—hence, 

the scoring. Then, we discuss our analysis for the items and corresponding responses and its 

implications. We conclude with next steps.  

Method: A Language-Independent General Solution 

Longest Common Subsequence 

The basic solution we propose for the above tasks is based on calculating an approximate 

match or similarity measure between two textual sequences. For the first task, a prefix-infix-

suffix omissions and insertions task, a similarity measure between a non-null unseen response 

and one that is true is calculated. For the second task, any two non-null responses, whether given 

in the scoring rules or produced by students, are compared via the same similarity measure. 
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The idea is simple: The closer the similarity—or the further the Dissimilarity—between a 

test taker’s response and a correct response, the more likely the response is true. In fact, the 

closer the similarity (or further the Dissimilarity) between any two non-null responses, R1 and R2 

where R1 is more likely to be true, the more likely R2 is true.  

In this study, we define the similarity measure between Text1 and Text2 to be the longest 

common subsequences (LCSs; Cormen, Leiserson, Rivest, & Stein, 2001) between them. 

However, the methodology applied will still hold using other similarity measures. 

This particular approach, the use of an LCS to compare test takers’ responses, is 

motivated by biological applications, particularly those used in DNA or gene sequencing, 

bioinformatics, or genetics.  

In biology, a strand of DNA consists of molecules called bases: adenine (A), 

guanine (G), cytosine (C), and thymine (T). A strand of DNA is represented as a string over the 

finite set {A, G, C, T}, where a string is a finite sequence of symbols that are chosen from a set 

or alphabet. Two strands of DNA, D1 and D2, are similar if they have common bases that appear 

in the same order but not necessarily consecutively. Hence, this can be seen as generating a third 

strand, D3, consisting of these common bases. The longer D3 is, the more similar D1 and D2 are. 

Comparing two strands of DNA in order to verify how close two organisms are is very similar to 

our task. Figure 1 shows two strands of DNA for two different organisms. When compared to 

each other, a resulting set of common molecules are shown in the third strand in the figure. 

Figure 2 shows the same two strands with another longer set of common molecules. By finding 

similarities between sequences, scientists can infer the function of newly sequenced genes, 

predict new members of gene families, and explore evolutionary relationships. 

 

Figure 1. DNA sequences and commonalities. 
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Figure 2. A larger set of ordered commonalities. 

In general, beyond the DNA and gene alphabet (only 4–20 letters), this idea can be 

applied to any language. An alphabet of a language can be any set from which the strings of the 

language may be formed. This set can be finite or infinite, though in most cases it is finite. In our 

case, it makes sense to say that an alphabet, whether in a formal or natural language, is the set of 

symbols, letters, or tokens from which the strings of the language may be formed. In other 

words, a string is a finite sequence or ordered list of elements of an alphabet. A subsequence of a 

string or sequence S is an ordered subset (the same order used for the sequence) of the sequence.  

A test taker’s response can be seen as a strand of DNA or a string over an alphabet. The 

string, in this case, is a finite set of graphemes where a grapheme is the smallest semantically 

distinguishing unit in a written natural language.1 A grapheme does not carry meaning by itself. 

Graphemes include alphabetic letters, Chinese characters, numerical digits, punctuation marks, 

and the individual symbols of any of the world’s writing systems. In the remainder of this 

document, we will use the term grapheme instead of character because we are dealing with a 

multilingual task where student responses can contain numerical digits or symbols. In our case, a 

subsequence of a string S in any natural language is a set of graphemes that appear in order—the 

same order as in the writing or script of the language (e.g., in Spanish from left to right, and in 

Arabic or Hebrew from right to left), but not necessarily consecutively. In a string such as naya, 

any of na, ay, aa, ya, ny, nay, or nya is an example of subsequences, but not a string such as an or 

aan.  

Given two strings or sequences, a common subsequence is one that appears in both, as 

shown in Figures 1 and 2. An LCS is a common subsequence that has a maximum size or length 

in terms of number of graphemes. For example, two strings, S1 = jjjsslpljlppjppslppspjljj and S2 
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= sjsssspjjllpjsspppllpps, have an LCS of jsspllpppplpps. In general, the similarity between two 

ordered sequences, as defined above, is not necessarily unique. However, its size is. Consider for 

example, the two sequences, NAY and NYA; there are two LCSs, namely, ny and na. The size or 

length is 2. Table 3 shows examples of pairs of texts with some LCSs (this particular 

implementation for results in Table 3 includes white spaces as members of the alphabet). 

Table 3 

Examples of Pairs of Texts With LCS 

Text 1 Text 2 LCS Length 

the Organisation for phony academic 
publications 

the Organization for 
phony and pub 

the Organiation 
for phony ad pub 

32 

l'Organisation de faux publications 
academiques 

l'Organzation de 
pu|lication aca  

l'Organation de 
pulication aca 

31 

Feliz Año Nuevo! Espero que todos estén 
muy bién. 

Espero verles a todos. 
Hasta muy pronto. 

Espero e todos st 
muy n. 

24 

ヨーロッパにおいて、職場でのストレスは

われわれが直面している安全衛生上最大の

難問です。調査によれば、欠勤日全体の50
%から60%がこれに関連していることを示

唆しています。つまり、人の苦痛と経済活

動の損失という両方の面から、膨大なコス

トがかかっているということです。', ' す 
 

欧州労働安全衛生機構 安全衛生 4 

To find an LCS, we can generate all subsequences and select one with maximum length. 

Actually, in some cases, the length might be all we are interested in, but as this is anticipated to 

be a general solution for many item types and additional educational tasks, we want to find the 

subsequences, too.  

Figures 3 and 4 show the two algorithms2 for finding LCSs and finding the length of an 

LCS without having to calculate the subsequence, respectively, as described in Cormen et al. 

(2001).  
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Let X = < x1, x2, …, xm> and Y = <y1, y2, …, yn > be sequences and let Z = < z1, z2, .., zk > be 

any LCS of X and Y. 

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1 
2. If xm ≠ yn , then  

a. If zk ≠ xm then Z is an LCS of Xm-1 and Y 
b. If zk ≠ yn then Z is an LCS of X and Yn-1 

Figure 3. Calculating an LCS recursively. 

Assume that length (i, j) is the length of an LCS of sequences Xi and Yj. 

 

length ,

0 if  0 or  0 

length 1, 1 1 if  , 0 and 

max  length , 1 , length 1, if , 0 and 

 

Figure 4. Calculating the length of an LCS recursively without producing the 

subsequences. 

In summary, we define a similarity between two texts or two test takers’ responses in this 

case, T1 and T2, each seen as a sequence of graphemes, to be 

1 , 2 LCS of graphemes between T1 and T2, 
 

where the white spaces and punctuation marks can be included or excluded depending on needs. 

This function is more meaningful if we were to know the total number of graphemes in both T1 

and T2. Let [H] denote the number of graphemes in a sequence of graphemes H. We calculate 

more indicative measures:  

 ,
 ,

 
 

or 

1 , 2   1 1 , 2 2 1 , 2 .  
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Obviously, the smaller the Dissimilarity measure, the more the similarity between the two 

sequences of graphemes. Again, normalizing the above measure using the total number of 

graphemes in the two sequences will be: 

 

1 , 2

  1 1 , 2 2 1 , 2

1 2
 

                         =
1 2 2 1 , 2

1 2
 

                         =   1 −  
2 [ ( 1 , 2)]

[
1 
] + [ 2]

 

                   =  1‐ 2 NSimilarity(T1, T2 ).
 

We recommend normalizing the measures because the application is going to be over a 

varied number of responses, items, and natural languages. Note that we can define 

Dissimilarity(T1,T2) as [T1] + [T2] - Similarity(T1,T2), which makes NDissimilarity(T1,T2) 

simply 1-NSimilarity(T1,T2). However, taking different combined measures into consideration is 

helpful and empirical evidence will confirm their adequacy. Having defined an approximate 

match or similarity measure, its use to solve our concerns is described in the following section. 

Scoring Sequences 

The first task is to automatically score unseen responses given a set of correct responses. 

Consider the set of non-null test takers’ responses where each response is seen as a sequence of 

graphemes (denote this set by ) and consider the set of distinct responses that are 

also correct or true where each response is seen as a sequence of graphemes (denote this set by 

), ∀    ∅ such that   ∈  & ∀   such that   ∈  , calculate 

a four-tuple: 

 =< LCS( , ), Length_of_LCS( , ), Dissimilarity( ,  ), 

NDissimilarity( ,   ) >. 
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For each item, an mxn matrix, Z , is obtained where m is the number of non-null 

responses and n is the number of distinct true responses: 

A11 ⋯ A1n
⋮ ⋱ ⋮

Am1 ⋯ Amn

. 

One way of reducing the dimensions of Z is to collapse similar responses into uniform or 

canonical representations, such as removing white spaces and punctuation marks. This means 

that only the uniform representations of   and   need to be compared.  

Figure 5 shows the comparison of each non-null response and each true response. Zt* 

denotes row t in Z matrix. For the ith non-null response, first find the minimum Dissimilarity, Δi 

= min  , }. 

 

Figure 5. Compare each unseen to each true. 

The same logic applies if we were to choose Similarity, but in that case we will choose 

the maximum instead of minimum. Thus, Δi is the minimum dij over all four-tuples in row Zi*. 

For simplicity, we will denote the arguments of  with <aij, bij, cij, dij>. Hence, Δi is of the form 

dik for some k between 1 and n, that is, for some true response. Hence, Z’s dimensions get 

reduced to m-by-1, and an m-by-1 column vector is obtained, as seen in Figure 6. Note that the 

selection of the minimum or maximum is the most intuitive and that is what we use in this study. 
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However, it is not the only option; one might, for example, select a linear function of the various 

(dis)similarities with weights corresponding to the number of repeated true responses.  

 

Figure 6. m-by-n matrix to m-by-1 matrix. 

However, at least for each item, the aim is to have one threshold or a tolerance, Γ, for 

Dissimilarity with what is considered correct or true, such that if ∃    , then the score of 

 is true. Hence, the m-by-1 column vector will guide our choice of the threshold, Γ. In the 

following, we describe how.  

Selecting a Threshold 

One option is just to set a threshold based on statistics related to the number of 

graphemes over all responses or the minimum and maximum correct responses (when these are 

available) where its selection is general across all items. A crude option, for instance, 

independent of any data, is to select a random threshold such as 0.5 or use some heuristics over 

NDissimilarity. For instance, select various thresholds that satisfy an arithmetic progression of 

the form Γn = Γm+ (n - m) d over all items across all languages or a subset of items over a subset 

of languages. For example, starting with a threshold of 0.1 and difference d of 0.1, the set of 

thresholds to consider would be {0.1, 0.2, … , upper bound of NDissimilarity}.  

Another option is to use a set of training or field-test data to guide our selection of a 

tolerance of Dissimilarity that can be applied on an unseen set of responses. Whether human 

scoring takes place for the training dataset or not will have an impact on threshold selection. 

Figure 7 shows that if human scores are given for each item, then we use the human scores to 

learn a threshold of (dis)similarity. If not, then one option might be to define a one-to-one 

correspondence between a response produced by a candidate, C, and C’s performance over a 
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subtest of items belonging, for example, to the same stimulus or the whole test, in order to learn 

a threshold. In any of these cases, a machine-learning algorithm also can be used to learn a 

threshold-given item-related or response-related attributes, such as LCSs, Dissimilarity, and so 

on. In all the mentioned approaches for a threshold selection, using a training dataset, that is, a 

set of student responses labeled or scored manually, is considered a supervised approach, while 

the rest are unsupervised approaches for learning or selecting a threshold. 

In this report, we concentrate on this first case, that is, where human scores are given 

with the responses. The other case where human scores are not given will be described in a 

separate study.  

In Figure 7, a preprocessing step is introduced. This step might simply be extracting 

relevant information from the log files or database used to store student responses or it could be 

removing white spaces and punctuation marks from student responses to obtain a uniform 

representation for a response or a sequence, and so on. In the evaluation section of this paper, the 

preprocessing step for this study will be specified.  

Figure 8 summarizes the process by which a threshold is selected given a set of student 

responses with their corresponding human scores (used as a training dataset). For each item, once 

the above matrix Z is obtained and reduced to the mx1 vector of Δi s, as described above, then 

∀    ∅ in the training dataset, the question is whether  is scored manually as true or not. 

If it was true, then denote Δi =  ΔiT, and if not, then denote Δi =  ΔiF. Find K such that K is 

max ∆    ⋀ ∀ ΔiF. ΔiF < K. If such a K exists, then set the threshold Γ = K. In practice, in this 

case, Γ is really one of the ∆  s. If such a K does not exist, then select a Γ such that the number 

of responses labeled manually as true will be maximized while minimizing the number of false 

positives, that is, responses labeled manually as false that we do not want to wrongly score as 

true. Once a threshold is selected over a certain item and non-null response dataset, then this 

threshold can be used to score future unseen responses.  
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Figure 7. Did human scoring occur? 

 

Figure 8. Selecting a tolerance for Dissimilarity. 
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Clustering Sequences 

Calculating similarity measures allows us to cluster sequences or students’ responses. For 

each item, the similarity measure is calculated between all responses (given in the scoring rules 

or written by students). The matrix that we calculated earlier in Figure 5 will become square or 

an m-by-m matrix where m is the number of all available (possible) responses. In the case of 

LCS and the fact that it is a commutative relation, the m-by-m matrix obtained is symmetric with 

the diagonal elements equal to each other.  

Next, the responses are clustered into equivalence classes depending on their proximity to 

each other. The clusters of responses might be true with high certainty (green or a walking-

person symbol) because of their proximity with correct or true responses, false with high 

certainty (red or open-arm person symbol) because of its remoteness to a true response, and 

uncertain (yellow or person-with-arms-down symbol) and need human intervention. This process 

can be made adaptive or dynamic in the sense that once the representative of the equivalence 

class or the cluster is labeled/scored (whether manually or automatically), a new unseen response 

can either fit into an already existing cluster or create a new cluster of its own (yellow) and the 

process can be repeated. Figure 9 illustrates the idea.  

 

Figure 9. Response clustering.  
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In the illustration in the figure, there are three clusters of responses, each corresponding 

to an item or a particular language for example, and each cluster has subclusters of green, red, 

and yellow labels. The first subcluster consists of true responses and the second consists of false 

responses. The text that appears in the box is one representative response of the cluster or 

equivalence class. If we were to click on the box, we would get a list of all responses 

corresponding to that cluster. As mentioned above, an unseen response can either fit under any of 

the existing clusters if it is similar to the members of that cluster/equivalence class or create a 

cluster of its own, which by default is labeled as not_labeled (yellow). In that case, a human can 

look at that newly formed cluster and change its label to red or green.  

Such clustering of responses corresponding to one item in one language or across 

languages has a nontrivial impact on content design, representation, and the scoring rules 

associated with this content. In the evaluation section, we will describe its impact and provide 

concrete examples.  

Before we go on to present the related work, implementation, and evaluation sections, we 

need to describe two methods that seem to be, at first glance, good solutions for this specific 

problem of the highlighting items. These methods are difference or commonality in terms of 

number of graphemes and LCS. We argue, however, that though they work for some cases, they 

are not general solutions, while the LCS-based solution is.  

A naïve baseline that compares the length of a non-null unseen response (UR) to the 

length of each true response (TR): 

Normalized difference   
abs  UR  –  TR

UR TR
 . 

This comparison of length is not a general solution for the problem, though it seems like 

it works in some cases. Consider the following example, where it seems acceptable to score the 

unseen response as true: 

 Unseen response: Sci discover t world that exists; engineers create the world that 

nev  

 True response: scientists discover the world that exists  

Normalized difference
69 42

69 42
0.24. 
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However, consider the following example where it is not acceptable to score the unseen 

response as true: 

 Unseen response: fire lookout towers roads water supply systems water drainage 

systems airports bridges sports stadiums toilet blocks marinas towers for wind 

generators elevated viewing platforms in forests or above lakes In short, engineers 

create the sorts of things we use all the time. Civil engineers can show their work 

to others with pride. And when these structures need repair or modification or 

when they've outlasted their usefulness, and need to be removed, these operations 

are the responsibility of civil engineers as well.  

 True response: What's the difference between a scientist and an engineer? The 

well-known physicist Theodore von Newman once said,  “Scientists discover the 

world that exists; engineers create the world that never was.” Or to use a literary 

metaphor, scientists write about the rules of poetry, whereas engineers write the 

poetry itself.   

Normalized difference = 
abs(522‐321)

[522] + [321]
= 0.24. 

Both have a normalized difference of 0.24. Hence, it is important to know if there is any 

commonality and not just a count. This does not mean that there might not be a false positive 

(i.e., a false response scored wrongly as a true response) using the LCS-based method once a 

threshold is selected, but it is more likely that there will not be as many relative to the naïve 

length comparison. 

With the second method, LCS, the question is whether we can consider a substring and 

not a subsequence an approximate match measure, that is,  

Similarity(ytj , xui) = LCS of graphemes between ytj and xui. 

The difference between a substring and a subsequence is that in a substring, only 

consecutive characters are considered, not just characters in the same order or direction of 

writing the language. This will also work in many cases, but it will not account for infix 

omissions. Consider the true response “quick dirty work,” and consider the student response 

“quck drty wok”; an LCS will be rty wo of Length 5 (excluding white spaces) and an LCS would 
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be quck drty wok of Length 11 (excluding white spaces). On the other hand, accounting for infix 

omissions might backfire, too, in some cases. Consider the true response “quick dirty work,” and 

consider the student response “life can be dandy, wild and honorable.” Then, an LCS would be i 

c d w or of Size 6 (excluding spaces) and an LCS would be a maximum of Length 2.  

A comparative evaluation between LCSs and substrings depends on the type of data in 

consideration and can only be shown empirically. However, intuitively, finding the LCSs is a 

more general and correct solution than finding the LCSs for our tasks.  

Related Work 

The medical literature has a lot to say about sequences and their comparisons. Sequence 

comparison can be done in two ways: qualitatively, or visually, and quantitatively. One type of 

comparison is known as alignment. It consists of two components: defining a similarity measure 

and defining an algorithm that will find the optimal alignment—in other words, defining a 

scoring scheme, scoring all sequence alignments, and then selecting the alignment with the best 

score. For example, in our case, the similarity measure is defined as the length of the LCSs; we 

assume different heuristic approaches to find the optimal alignment or select a threshold.  

In simple terms, sequence alignment is the most economical method to transform a 

sequence into another. For example, a sequence like ABCD is transformed to EBCD by 

substituting A with E, while to transform it to EBD, an additional deletion of C will be required. 

Hence, assuming all operations cost the same, the cost of aligning ABCD with EBCD is less than 

aligning it with EBD. The operators do not have to be restricted to deletion or omission or to 

substitution and transposition (called indels) and they do not necessarily have equal cost. In 

general, given a set of operators over a set of alphabet, one can define a cost for transforming one 

into another.  

There are different types of sequence alignment: global, local, and multiple sequence 

alignment. Global alignment is the best alignment over the entire length of the two sequences. It 

usually starts at the beginning of the two sequences and adds gaps to each until the end of one is 

reached. Local alignment refers to considering alignment over subsequences and not the entire 

length of the two sequences in question. It finds the regions of highest similarity between the two 

sequences and builds the alignment outward from there. Multiple sequence alignment involves 

more than two sequences. We will not go into it in this particular study. Table 4 lists some of the 
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well-known similarity measures, scoring schemes, and the algorithm(s)—local or global—used 

to find the optimal alignment. 

A brute force approach to find optimal alignment would be to generate all alignments, 

score them, and select the best score—an approach that is very impractical. The Needleman-

Wunsch approach (Needleman & Wunsch, 1970) reduces the number of possibilities 

considerably yet guarantees that the best solution is still obtained. The basic idea is to build up 

the best alignment by using optimal alignments of smaller subsequences. Sellers (1974) used a 

metric distance to define similarity and select the best score. This led to the Smith-Waterman 

algorithm (Smith & Waterman, 1981; Arratia & Waterman, 1994), the most accurate in database 

search but the slowest. Since then there have been many variations for optimizations and more 

efficient algorithms. For example, Basic Local Alignment Search Tool (BLAST; Altschul, Gish, 

Miller, Myers, & Lipman, 1990; Altschul et al., 1997) is the tool most frequently used for 

calculating sequence similarity. BLAST was developed to provide a faster technique than 

another algorithm developed earlier, called FAST-All (FASTA; Pearson & Lipman, 1988). 

FASTA, which works with any alphabet, is an extension of two other tools, FAST-P (for protein) 

and FAST-N (for nucleotide).  

The edit distance (Levenshtein, 1965, 1966) is the number of deletions, insertions, or 

substitutions required to transform a string S into a string T. Several variations of this metric 

exist; for example, the Damerau–Levenshtein distance  (Damerau, 1964). accounts for number of 

transpositions of two adjacent characters, too. The cost of each operation—insertion, deletion, 

transposition, substitution—might vary.  

One can easily see that any of these sequence alignment techniques can be seen as a 

variation of looking at our problem. In particular, when only insertion and deletion (no 

substitution) are allowed or when the cost of substitution is double the cost of an insertion or 

deletion, then for two sequences S = s1, s2, …sn and T = t1,t2, …tn the edit distance(S,T)= n + m - 

2 LCS(S,T). Hence, one can easily make a comparative evaluation with the edit distance measure 

under these conditions. However, the reason the edit distance measure was not selected first for 

this particular application is that it is not always commutative. It is only commutative when the 

cost of each operation is the same. We wanted to start with a measure that will partition the space 

of responses into equivalence classes without additional conditions.  
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Table 4 

Some Well-Known Alignment Techniques 

Finding optimal alignment Type Comments 

Needleman-Wunsch (1970) Global alignment Same accuracy as Smith-Waterman. Slower 
than BLAST but faster than Smith-Waterman 

Smith-Waterman (1981) 
or better implementations of it 
(Gotoh, 1982; Altschul & 
Erickson, 1986) 

Local sequence 
alignment 

Used in FASTA 

Slower than BLAST but more accurate 
(exhaustive and uses dynamic programming). It 
is a variation of the Needleman-Wunsch. 

BLAST: Heuristic approach 
approximating the Smith-
Waterman algorithm (Altschul 
et al., 1990) 

Local BLAST 

Faster than Smith-Waterman but less accurate 

Align Global 

 

FASTA 

Implements the Needleman-Wunsch global 
alignment algorithm 

LAlign Local: Huang and 
Miller (1991) 

FASTA 

Implements the Waterman local-alignment 
algorithm 

FASTA uses a hybrid of heuristic and 
exhaustive approaches. 

Needle Global EMBOSS 

Same program as Align, but it has an improved 
version called Stretcher (Myers & Miller, 1989)

Edit-distance measure Global Several tools  

LCS Can be used both global 
and local 

Several tools including ours  

Sequence alignment is used beyond biology and bioinformatics. In fact, some of these 

computer science techniques might have been originally developed for text editing and text 

comparison but became more popular with biological applications. For example, file comparison 

programs such as the function diff in Unix that compares pairs of lines belonging to each file, in 

a sequential order, uses the LCS algorithm. The diff program was originally written by 

D. McIlroy and J. W. Hunt. Their implementation was for an algorithm originally published by 

Hunt and Szymanski (1977). 
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In linguistics, sequence alignment has been used in various areas. For instance, in natural 

language generation, sequence alignment techniques were used to produce linguistic versions of 

computer-generated mathematical proofs (Barzilay & Lee, 2002). Spell-checking techniques 

could depend on sequence alignment (Sasu, 2011), and similarly for speech recognition (Pucher, 

Turk, Ajmera, & Fecher, 2007, Ziółko, Gałka, Skurzok, & Jadczyk, 2010). In fact, many 

sequence algorithms had extensive use and some success in speech recognition since the early 

1990s. Another application has been plagiarism detection (Lukashenko, Graudina, & 

Grundspenkis, 2007; Su et al., 2008). In comparative linguistics, sequence alignment was used to 

compare or reconstruct languages automatically (Kondrak, 2002).  

Furthermore, alignment techniques were used in business applications—for example, to 

analyze purchases over time (Prinzie & Van den Poel, 2005).  

This Study 

Description 

For this particular study, we didn’t have access to the minimum evidence, maximum 

evidence or scoring rules, only the automatic scores obtained using symbolic logic strict rules. 

Also, beyond the minimum, missing characters within the maximum were tolerated in the 

existing implementation of the scoring rules. For instance, a response, “Hw birth ra less than 

average fell 4% between 2007–2009 low due to unfavorable economic conditions,” for the item 

in Table 1 is scored automatically as true while “Hw birth ra less than averag fell 4% between 

2007–2009 low due to unfavorable economic conditions” is scored as false.  Hence, the scoring 

task was reduced to the following: For each item, given the responses and their scores, where 

scores have been obtained automatically using the propositional logical rules, the aim is to 

correct the scores of responses scored as false due to insertion or omission of characters.  

The processes and methodologies were applied as described earlier in the method section. 

The set of non-null test takers’ responses that were scored automatically as false were considered 

instead of the set of unseen responses, ResUnseen, and the set of distinct responses that were 

scored automatically as true were considered . 

The clustering task was reduced to the available responses with no access to true 

responses except the ones scored automatically as true. In both tasks, the assumption was that 

responses scored automatically as true are scored correctly. 
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Implementation 

This is an intuitively simple problem, but surprisingly difficult to solve and implement 

correctly. Methods to improve performance efficiency in terms of time and memory can make a 

difference for implementation, as the literature suggests. In the following, we provide a 

complexity analysis for each item that can be easily generalized to any number of items. 

The preprocessing step includes (a) finding all responses that were labeled automatically 

as false, (b) finding all responses that were labeled automatically as true (and any true responses 

if we have access to the minimum and maximum), (c) filtering out all null responses labeled as 

false, and (d) considering distinct true responses, and then transforming them to a uniform 

representation. Hence, same or uniformly represented responses are identified and only one is 

considered in the processing. Also, we applied some quality assurance steps, such as no null 

responses being scored as true, and each candidate has one and only one response (the latest he 

or she produced).  

Transforming the non-null responses labeled as false to a uniform representation is 

performed similarly to true responses for consistency and efficiency, keeping in mind that 

candidate IDs for responses labeled as false have to be possible to retrieve. Also, the results for 

each pair true response ( ) and false response ( ): <Text1/ , Text2/ , LCS, Length, 

Dissimilarity, and NDissimilarity> can be stored in a database in order to avoid recalculating for 

the same pair of sequences or texts. If Text1 and Text2 have already been encountered, we just 

look them up. 

 Hence, in practice, one would be dealing with M distinct uniformly represented non-null 

responses labeled as false and N distinct uniformly represented true responses. 

All of the above preprocessing steps are either constant or linear in the number of 

responses labeled as true or false. Hence, this preprocessing step will be ignored as part of the 

analysis of runtime. Also, once the M x N matrix is produced, calculating Δi and selecting the 

threshold also takes a constant time. The runtime of calculating the matrix, in the worst case 

scenario, is:   

F(Z) = M x N O(LCS(Ti, Tj)) where I = 1, 2, ..., m and j = 1, 2,…, n. 

Hence, the process of comparing two texts, that is, finding the LCSs, is what is crucial to 

analyze. This is a classical computer science problem and has been studied extensively. Many 



22 

suggested implementations with various complexities exist in the literature (Hadlock, 1988; 

Hirschberg, 1977; Hunt & Szymanski, 1977; Masek & Paterson, 1980; Myers, 1986; Nakatsu, 

Kambayashi, & Yajima, 1982; Wagner & Fischer, 1974).  

As seen in Table 4, the algorithm is recursive. However, if it would be implemented just 

recursively by calculating all subsequences and selecting one, then its runtime in the worst-case 

scenario would be exponential in the number of characters in the two texts. If implemented in a 

dynamic way or using memorization (Wagner & Fisher, 1974), then it has an O(nxm) worst-case 

running time where n and m are the number of graphemes in each sequence. Its space 

requirement in the worst case is quadratic, too. Hirschberg’s algorithm (1975) reduced the space 

requirement to O(n + m). Later, an improvement to O(
   

) was suggested by Masek and 

Paterson (1980).  

Other existing algorithms present complexities that depend on parameters other than n. 

For example, Myers (1986) and Nakatsu et al. (1982) suggested an algorithm with O((n + m) D) 

where D is the simple Levenshtein distance between two given strings. Iliopoulous and Rahman 

(2008) suggested an algorithm with O((n + m) R) where R is the total number of ordered pairs of 

positions at which the two sequences match. In 2011, Thang (2011) suggested that if the two 

sequences belonged to two finite languages accepted by two finite automata, A1 and A2, then the 

algorithm of finding the LCS is O(|A1| |A2|) worst-case running time, where |Ai| is the number of 

states and edges of automata Ai. 

In our case, for the first prototype, we implemented a dynamic recursive algorithm in 

Sociaal-Wetenschappelijke Informatica (SWI) Prolog3 with a quadratic time and quadratic space 

requirement. Graphemes were transformed to Unicode (utf8) representation to make the 

implementation natural language-independent.  

In an operational setting, we need only one true response with Dissimilarity less than or 

equal to the threshold for the false responses to switch to a true response. 

As mentioned earlier, for efficiency, the results for each pair—Text1/ , Text2/ , 

LCS, Length of LCS, Dissimilarity, and NDissimilarity—have been stored in a database in order 

to avoid recalculating for the same pair of sequences or texts. If Text1 and Text2 already have 

been encountered, we just look them up. 
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Evaluation 

For the evaluation of the approach and techniques, four highlighting items belonging to 

the item type previously described, written in English (EN), Spanish (ES), French (FR), and 

Japanese (JA), were considered. The language codes were adopted from Wikipedia (“List of ISO 

639-1 codes,” n.d.). All responses in all languages were scored manually. All English, French, 

and Spanish responses were scored by the same human rater. All the Japanese responses were 

scored by one human rater, who was different from the person who scored the English, French, 

and Spanish. The responses were collected in Chile (CL), Canada (CA), Britain (GB), France 

(FR), Spain (ES), Ireland (IE), and Japan (JP). The country codes were adopted from Wikipedia 

(“ISO 3166-2,” n.d.).  

Results 

We first include some average sequence length for different languages in each item, 

which illustrates how sequences considered in this task are by far much shorter than sequences 

considered in DNA sequence algorithms in general. It also gives an idea on the range of true 

student responses. Figure 10 summarizes the range and the average number of graphemes of 

non-null false and true responses. In general, on average, the number of graphemes for responses 

scored automatically as false is larger than that of responses scored as true. 

 

Figure 10. Average number of graphemes in the 32 <country, language> considered. 

In the following, we will present the results of our scoring approach for each item 
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Because there is very little data, we decided to train on responses associated with one 

country only, regardless of the size of the dataset associated with that country and its language. 

Once a threshold is selected based on that country, the evaluation is performed using the datasets 

of responses corresponding to the rest of the countries even if the datasets belonged to other 

languages. This assumes that the rubrics for each item in all countries are defined in the same 

way. There was no specific methodology for selecting the set of training data except the order of 

the files listed. In other words, there is no intuitive reason for favoring one country or language 

over the other. Hence, the methodology could be modified when more data are available. For 

instance, the experiment could be repeated by dividing the number of responses equally or by 

treating each language separately because some issues might be language-specific issues.  

In the rest of the document we will refer to automatic scores based on the symbolic 

logical rules given with each item as original automatic scores and the scores based on our LCS 

method as updated automatic scores. Recall that there are several assumptions. First, there is no 

access to the scoring rules. Second, the original true responses are correct. In fact, there is 

absolutely no reason why any of them should be incorrect because the existing Boolean 

implementation was verified. The aim is to rescore the set of non-null responses with original 

scores false.  

Tables 5–16 consist of three tables of results for each of the four items. The first table for 

an item contains (a) the total number of student responses, (b) the number of responses with 

original automatic scores that are false, (c) the number of non-null responses with original scores 

that are false, (d) the number of non-null distinct responses with original scores that are false, (e) 

the number of non-null distinct uniform responses with original scores that are false, (f) the 

number of responses with original automatic scores that are true, (g) the number of distinct 

responses with original scores that are true, and (h) the number of distinct responses represented 

in a uniform way with original scores that are true. Recall that a uniform representation is one 

with no punctuations and no spaces. Some languages, such as Japanese, have fewer punctuation 

marks than other languages and graphemes are not separated with white spaces; hence, a uniform 

representation might not make much difference. 

The second table for an item contains (a) the number of non-null response with a human 

score of false with an original automatic score that is false, (b) the number of non-null false 

responses labeled by humans as true, (c) the number of responses scored by humans as false that 
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are corrected properly to true using our scoring method, and (d) the number of responses scored 

by humans as false but wrongly scored by our method as true.  

The third table summarizes the results for each item in terms of accuracy, precision, 

recall, and true negative rate. The meaning of precision = 1 and recall = 1 is that the method used 

has yielded the whole truth and nothing but the truth. In our case, precision = 1 means that the 

new automatic scoring method is definitely an improvement over the existing technique, that is, 

the implementation of the Boolean scoring rules. 

Results for Item 1 

The following three tables of results correspond to Item 1. 

Table 5 

Item 1: False Versus True Responses as Originally Scored Automatically 

 Total False 
Non-null 

false 

False 
distinct 
non-null 

False  
distinct 

non-null uniform True 
True 

distinct 

True 
distinct 
uniform 

IE_EN 85 52 42 32 30 33 14 5 
GB_EN 69 53 38 26 26 16 11 6 
CA_EN 48 30 19 17 17 18 9 6 
CL_ES 94 70 44 34 32 24 9 4 
ES_ES 127 90 58 40 40 37 16 10 
FR_FR 244 164 108 85 82 80 29 27 
CA_FR 66 41 29 19 19 25 13 11 
JP_JA 153 75 50 43 43 78 23 23 

Training on IE_EN, a threshold of 0.19 is learned based on the responses labeled by 

humans. Table 6 shows the results for the evaluation using the datasets corresponding to other 

countries and languages with the threshold of 0.19. In GB_EN, five of six are scored correctly to 

true with the threshold selected. One response has a minimum Dissimilarity of 0.21 with a true 

response; hence, it is missed being scored correctly. CA_EN has zero true responses labeled by 

humans. In ES_ES, the three responses get corrected. Actually, it turns out they only need a 

threshold of 0.07. In FR_FR, nine of the 12 pass, but three responses need minimum 

dissimilarities of 0.2, 0.22, and 0.25, respectively, to be corrected. The eight responses in CA_FR 

pass and get scored correctly. In fact, a threshold of 0.16 turns out to be enough for these 

responses. For JP_JA, only three of the 16 responses pass the threshold, while each of the rest 

has a maximum Dissimilarity with a true response greater than 0.19.   
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Table 6 

Item 1: How Many False Get Corrected Properly to True?  

 

Non-null with 
original 

automatic score 
as false 

Non-null original 
score false 
scored by 

humans as true 

Non-null original score 
false with human score 
true updated automatic 

score as true 

Non-null original score 
false with human score 

false with updated 
automatic score as true 

IE_EN (training) 42 3 3 0 
GB_EN 38 6 5 0 
CA_EN 19 0 0 0 
CL_ES 44 1 1 0 
ES_ES 58 4 4 0 
FR_FR 108 12 9 0  
CA_FR 29 8 8 0 
JP_JA 50 16 3 0 

One of the false responses in CL_ES that was labeled by humans as false and was about 

to pass the threshold (0.199) was the following. The student highlighted the true response but 

some additional information was also highlighted that—though it kept it in the proximity of 

true—was a part of a quote from someone who is different from the person in the prompt of the 

item: 

 s. El entrenamiento específico mejora la atención dividida,” señala Sekuler…“Una 

sesión de entrenamiento de tan solo dos horas mejora los resultados de las pruebas de las 

personas mayores. El entrenamiento sostenido puede hacer maravillas” 

This is one case where the context, or more simply the position of the graphemes in the 

passages, can be used to help. Table 7 summarizes the results. 

Table 7 

Item 1: How Many False Get Corrected Properly to True? (Summary) 

Item 
Training of positive instances

 (# of negative instances) Evaluation Accuracy Precision Recall 
True 

negative rate 
Item 1 3 (39) 346 0.95 1 0.63 1 
Item 1a   0.99 1 0.96 1 

aAccuracy measures recalculated without Japanese responses.  
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The positive instances are the responses scored by humans as true and the negative 

instances are the ones scored by humans as false. The second row shows the results if we were to 

recalculate the accuracy measures above without considering the Japanese responses.  

Results for Item 2 

The following three tables of results correspond to Item 2. 

Table 8 

Item 2: False Versus True as Originally Automatically Scored 

 Total False 
Non-null 

false 
False distinct 

non-null 

False 
distinct 
non-null 
uniform True 

True 
distinct 

True 
distinct 
uniform

IE__EN 81 23 17 13 13 58 3 2 
GB_EN 66 16 5 4 4 50 5 5 
CA_EN 44 13 5 5 5 31 4 4 
CL_ES 107 34 21 19 18 73 7 7 
ES_ES 128 44 20 14 14 84 7 7 
FR_FR 213 73 27 16 16 140 12 11 
CA_FR 56 23 10 10 10 33 4 4 
JP_JA 157 36 16 15 15 121 13 13 

Training on IE_EN, a threshold of 0.69 is selected with one false response with a human 

label of false getting an updated score as true (with a 0.5 minimum NDissimilarity and a 

response of 5). To evaluate, the rest of the countries were used and results are listed in Table 10. 

In GB_EN, the two responses are corrected properly; after inspection, a 0.33 threshold is enough 

for the two responses. The response in CA_EN needs an NDissimilarity of 0.7. Hence, it gets 

missed with a 0.69 threshold. For ES_ES, the five responses pass the threshold. In fact, all 

responses require NDissimilarity of 0.2–0.55. Similarly, CL_ES’s five responses pass with 

maximum NDissimilarity of 0.33. In particular, 0.13, 0.2, 0.27, 0.33 is the minimum proximity of 

each response to one of the true responses. For FR_FR, the eight responses pass with 0.06–0.56 

NDissimilarity range. For CA_FR, two responses fail to pass the threshold requiring 0.74 and 

0.75 NDissimilarity, while one response passes with 0.22 NDissimilarity. For JP_JA, five out of 

the five pass (0.01–0.17).  
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Table 9 

Item 2: How Many False Get Corrected Properly to True? 

 

Non-null with 
original automatic 

score as false 

Non-null original 
score false scored 
by humans as true

Non-null original score 
false with human score 

true with updated 
automatic score as true 

Non-null original score 
false with human score 

false with updated 
automatic score as true

IE__EN_(training) 17 9 9 1 
GB_EN 5 2 2 1 
CA_EN 5 1 0 1 
CL_ES 21 5 5 11 
ES_ES 20 6 6 4 
FR_FR 27 8 8 2 
CA_FR 10 3 1 2 
JP_JA 16 8 8 0  

For this particular item, the majority of correct responses are the same. There is not much 

variety in correct responses with which to compare. Hence, a similar response to the following 

true response is deemed too distant, unfortunately:  

When you make a direct call to Portugal from another country, after dialing the number 

which gains access to the international service (which varies from country to country), 

you should dial 351 (the code for Portugal) and the inter-urban code without 

On the other hand, a response in GB_EN whose original score is false and whose human 

score is false such as “For information about the codes for countries and places that are not 

included in the list, please dial: For help connecting a call, please dial: Some Country, Regional 

and City Codes In the case of countries marked with a “*” you only ne” gets a minimum 

Dissimilarity score of 0.673 with one true response, “351 (the code for Portugal) and the inter-

urban code without the first 0.” 

In CA_EN, a response whose original score is false and whose human score is false such 

as “For information about the codes for countries and places that are not included in the list, 

please dial: 351” has a minimum NDissimilarity of 0.668 with one of the true responses,” you 

should dial 351 (the code for Portugal).”  Hence, it passes the threshold of 0.69. 

This latter example requires some knowledge about the context in the rest of the false 

response. We might want to consider the proximity or distance from more than one true response 

and/or other false responses, as we suggest in the clustering approach where all responses get 

compared. 
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For CL_ES, a minimum NDissimilarity is shared between two responses, 35 and 00 49 

351. The original automatic scores for these two responses are false. They share the 

same NDissimilarity of 0.43 when compared to a correct response, 1351, while one of them is 

labeled true by humans and the other is labeled false.  

For ES_ES, five responses that are supposed to be true all pass and their minimum 

NDissimilarity is either 0.2, 0.25, or 0.53, while the six false positives have NDissimilarity of 

0.53, 0.55, 0.59, 0.67, 0.68. 

For FR_FR, the two false positives pass with 0.59 and 0.57 NDissimilarities, while for 

CA_FR, the false positives pass with 0.54 and 0.62 NDissimilarities.  

Table 10 summarizes the results. 

Table 10 

Item 2: How Many False Get Corrected Properly to True? (Summary) 

Item 
Training # of positive instances

(# of negative instances) Evaluation Accuracy Precision Recall True negative rate
Item 2 9 (8) 104 0.76 0.57 0.9 0.69 
Item 2a   0.76 0.57 0.9 0.69 
aAccuracy measures recalculated without Japanese responses. There would be no difference in 

the result if we were to exclude the Japanese responses.  

Results for Item 3 

The following three tables of results correspond to Item 3. 

Table 11 

Item 3: False Versus True as Originally Automatically Scored 

 Total False 
Non-null 

false 

False 
distinct 
non-null 

False distinct 
non-null 
uniform True 

True 
distinct 

True 
distinct 
uniform 

IE_EN 81 20 11 10 10 61 1 1 
GB_EN 63 17 8 7 7 46 4 4 
CA_EN 46 13 4 4 4 33 3 3 
CL_ES 101 38 9 8 8 63 2 2 
ES_ES 115 42 12 9 9 73 3 3 
FR_FR 216 71 19 15 15 145 5 5 
CA_FR 39 11 1 1 1 28 3 3 
JP_JA 148 24 6 6 6 124 4 4 
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For this item, except for Japanese where responses needed NDissimilarity of 0.6 and 0.2 

to pass, most responses were corrected with the selected threshold of 0.09, based on the training 

set in IE_EN. For CL_ES, one response, “Agencia E ad y la Salud,” that says something like “E 

Agency y and Health” for “European Agency for Safety and Health at Work” requires a 0.4 

NDissimilarity to pass. For ES_ES, six out of eight responses pass with the 0.09 threshold. The 

other two require NDissimilarity of 0.17 and 0.13, respectively. For FR_FR, 10 out of the 12 

pass, while the two remaining responses require 0.1 and 0.17 NDissimilarity. 

Table 12 

Item 3: How Many False Get Corrected Properly to True? 

 

Non-null with 
original 

automatic score 
as false 

Non-null 
original score 
false scored 

by humans as 
true 

Non-null original 
score false with 

human score true 
updated automatic 

score as true 

Non-null original 
score false with 

human score false 
updated automatic 

score as true 
IE_EN (training) 11 8 8 0  

GB_EN 8 6 6 0 
CA_EN 4 3 3 0 
CL_ES 9 5 4 0 
ES_ES 12 8 6 0 
FR_FR 19 12 10 0 
CA_FR 1 1 1 0 
JP_JA 6 2 0 0 

Table 13 summarizes the results.  

Table 13 

Item 3: How Many False Get Corrected Properly to True? (Summary) 

Item 

Training 
# of positive instances 

(# of negative instances) Evaluation Accuracy Precision Recall 
True 

negative rate 
Item 3 8(3) 60 0.88 1 0.81 1 
Item 3a   0.94 1 0.86 1 
aAccuracy measures recalculated without Japanese responses.  

Results for Item 4 

The following three tables of results correspond to Item 4. 
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Table 14 

Item 4: False Versus True as Originally Automatically Scored 

 Total False 
Non-null 

false 

False 
distinct 
non-null 

False 
distinct 
non-null 
uniform True 

True 
distinct 

True 
distinct 
uniform 

IE_EN 85 47 47 41 39 38 18 17 
GB_EN 69 43 31 22 21 26 11 10 
CA_EN 48 31 24 20 18 17 11 10 
CL_ES 94 64 43 30 28 30 17 15 
ES_ES 127 72 46 28 26 55 23 21 
FR_FR 246 157 117 84 79 89 29 25 
CA_FR 66 37 29 22 21 29 16 15 
JP_JA 153 84 63 41 41 69 25 25 

With no human-labeled true responses for IE_EN, we opted to use the GB_EN dataset 

and a threshold of 0.22 was selected. As mentioned earlier, there was no particular methodology 

on selecting the training dataset for this particular study. When there were no useful responses 

corresponding to a particular <country, language> pair, the next dataset available corresponding 

to any <country, language> pair was used to learn a threshold. 

Table 15 

Item 4: How Many False Get Corrected Properly to True? 

 

Non-null 
with 

original 
automatic 
score as 

false 

Non-null 
original score 

false scored by 
humans as true 

Non-null original 
score false with 

human score true 
updated automatic 

score as true 

Non-null original 
score false with 

human score false 
with updated 

automatic score as 
true 

IE_EN 47 0 0 0 
GB_EN (training) 31 2 2 0 

CA_EN 24 2 2 0 
CL_ES 43 18 3  0 
ES_ES 46 0 0 0 
FR_FR 117 11 11 0 
CA_FR 29 3 3 0 
JP_JA 63 0 0 6 

The two responses labeled true by humans in CA_EN each have a Dissimilarity of 0 with 

one of the true responses. It is similar for one response labeled true by humans in CA_FR. 

Hence, it is not clear why these have an original automatic score of false unless there is a space 
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or some other grapheme missing that was not captured while extracting the text from the log file. 

For CL_ES, only three out of 12 pass while the rest have NDissimilarity ranging from 0.26–0.63. 

Except for JP_JA, none of the false responses labeled by humans as false get an updated 

automatic score of true. The six responses in Japanese have minimum NDissimilarity ranging 

from 0.078–0.215. 

Table 16 summarizes the results. 

Table 16 

Item 4: How Many False Get Corrected Properly to True? (Summary) 

Item 

Training 
# of positive instances 

(# of negative instances) Evaluation Accuracy Precision Recall 
True 

negative rate 
Item 4 2(29) 369 0.95 0.76 0.55 0.98 
Item 4a   0.95 1 0.55 1 

aAccuracy measures recalculated without Japanese responses. There would be no difference in 

the result if we were to exclude the Japanese responses.  

For the four items in the four languages and the eight countries considered, there is a 

nontrivial percentage of responses whose original automatic score is false that get corrected 

properly to true, while each item has very different expected evidence and each human rater 

might have been more strict or lenient (no double scoring for the same responses and items have 

occurred to compare Human–Human agreement). However, as the precision and recall tables 

show, this is not the whole story. In one particular case (Item 2), the number of false positives is 

nontrivial. The questions then are: (a) Is erring on the positive side or the negative side better, 

that is, is it better to grant more true scores than false, and (b) Might it be the case that one can 

categorize the types of scoring rules associated with this item type into ones where this LCS 

method works better for some categories rather than others? Saying this, note that the number of 

training and evaluation data is very small and language-specific thresholds might hold better. For 

three of the four items, both Precision and Recall are either one or very close to one. Hence, 

these are considered excellent results. That said, evaluations with more items and responses will 

reveal the strengths and weaknesses of this approach.  
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Discussion 

In the following, we describe some general observations and issues that might exist. 

These are divided into human scoring issues and issues with linguistic and cultural content 

analysis that have an effect on both human and automatic scoring.  

Human Scoring 

We found that human scoring was more challenging than expected. Deciding where one 

draws the line about what is considered false or true was not so straightforward, given the current 

content representation.  

For instance, we looked at the following example:  

'「これは悪い知らせだ」とセクラーは言う。', ' 

「2時間程度の短いトレーニングで、年配者のテスト結果が向上した。継続的に

トレーニングを行えば、素晴らしい結果が出る」' 

that, translated to English, is 

“‛That’s the bad news, says Sekular.’” A training session of as little as two hours 

improves the test results of older people. Sustained training can work wonders.” 

It was hard to decide whether to score this as true or false. It is true because the student 

responded correctly in the part about “A training session of as little …wonders.”  The additional 

part, that is, that violates the maximum, namely, “that’s the bad news, says Sekular,” appears in 

a very different column in the passage. Hence, it is unlikely that the student guessed the correct 

response. In fact, the prompt specifically asks for some other person’s take on the issue. On the 

other hand, the additional part has no semantic relevance or coherence with the correct response. 

The human scoring allowed us to categorize responses according to the following: 

Highlighting Beyond or off the Maximum 

 What seems like a pure mechanical mistake: When a student seems to 

unintentionally omit or add and ends up with a response beyond the maximum.  

 What seems semantically legitimate: When a student highlights additional 

information either as: (a) a specific detail such as an illustration or an example 

confirming the correct response, or, (b) what seems to be logical coherent 
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continuation of a correct response but not as specific as an illustration or an 

example.  

 What is legitimately wrong: When a student highlights clearly wrong 

information—for instance, information that is incoherent with the maximum or 

highlighting the whole passage. 

Highlighting Insufficient or Inadequate Minimum 

 What seems like a pure mechanical mistake: Similar to the above case, a student 

omits or adds unintentionally and ends up with a response that is insufficient or 

inadequate.  

 What seems semantically legitimate: When the occurrence of a certain minimum 

in a certain position is not acceptable, though it does not seem there is any 

contradictory or unsuitable context.  

 What is legitimately wrong: When an item is clearly wrong, for instance, stress as 

a response to “how to train your memory?”  

Question Marks 

We give this nomenclature for cases where we are not sure why responses have been 

scored as such. For example, some responses that are clearly correct were given a false label 

automatically. This might have been due to missing spaces or preprocessing steps that were not 

extracted in our data. 

A Deeper Content Analysis 

We will present our observations in five categories. 

Natural Language Translation-Based Issues 

It might be possible that some meaning variations are introduced when translating from 

one language to another. In other words, students responding in Language X might be, 

unintentionally, favored over students responding in Language Y. The issues we noticed until 

now had to do with the selection of lexical entities by item developers. A lexical entity comprises 

a word, a compound, or a multiword lexical entity. In the rest of the document, we will just refer 

to it as a word. 
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Introducing ambiguities. This occurs when translating a passage from Language L1 to 

Language L2. A word that belongs to the minimum correct response is used in L2 in more than 

one position in the passage with the right context, while in L1 different words are used or the 

same word with different implicit contexts is used. This repetition might increase the ambiguity 

for students. For instance, in 集中的記憶訓練, the word training in Japanese is introduced in 

more than one position in the passage with the right context. Hence, either response is correct, 

while the rubrics specified one position to be correct and the other not. The reason is that in 

English there was no such reoccurrence or ambiguity between the two occurrences. 

Reducing ambiguities. This occurs when translating a passage from Language L1 to 

Language L2. A word that belongs to the minimum correct response is used in L2 in more than 

one position in the passage that might reduce the ambiguity for students responding in L2. For 

instance, in English, the word create occurs more than once in a certain passage, yet only one 

occurrence of the word is associated with creativity and abstract artistic talents like poetry. The 

same happens in Spanish and French. When looking at the same passage in Japanese, two 

different words were used—one associated with abstract objects and one associated with 

concrete objects. A student responding in Japanese is more likely to select the word associated 

with abstract things when asked about art, while the students in other languages will not have 

that extra resolution of ambiguity between the occurrences of create. 

Neutral but different translation. An example would be the use of numbers expressed 

in words rather than numerals, such as twenty versus 20. 

Content Word Order 

Denoting a subject in a sentence by S, a verb by V, and an object by O, then languages 

could be divided between SVO, SOV, VSO, VOS, OVS, and OSV. We are used to languages 

with SVO orders, but actually the most common order in the languages of the world, including 

Japanese, is SOV. The other orders occur in very small percentages. 

This might create issues because a content word such as a verb or a noun (object or a 

subject) might appear in the minimum. For example, consider the minimum evidence, 

“electronic products,” and a response, “Japanese build electronic products smoothly and 

elegantly.” In Japanese syntax, electronic products would not be placed between build and the 

adverbs, but located earlier, so Japanese students might highlight “build smoothly.” Hence, their 
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response is correct, but it is inadequate minimum (because minimum evidence is “electronic 

products”). However, either the meaning is implicit or they missed “electronic products” by 

mistake.  

Background, Cultural, or World Knowledge Variations  

There are variations that we attribute to background, cultural, and world knowledge. A 

few examples follow. 

The prefix used to place a phone call abroad varies from one country to another. Though 

this is stated in the passage corresponding to one item, it is an issue that people in general have 

when they move to a new country. In the United Kingdom, for instance, calling abroad requires 

00, but in the United States, 011. Some students tend to highlight the 00 if there was any 

occurrence of 00 in the text, in addition to what is required based on, we hypothesize, the 

student’s home country. The maximum in the scoring rules might have to take this into 

consideration. 

Another instance is related to professions. The fact that architects are considered artists 

and not engineers in some countries might be a reason why many students highlight the fact that 

engineers are associated with architects in the text as a sign of being artistic. The same goes for 

the construction of structures such as bridges because it is creative and artistic. 

Same Language, Different Variations 

 Within the same language, there were variations. Between the passage written in French 

in France and the one in Canada, there were many variations in the translation. For instance, 

wonders was translated to wonders/merveilles in France but translated to miracles in Canada. 

Sustained was kept sustained in Canadian French, but regular/régulier was used in France.  

 French in France: Un entraînement régulier peut faire des merveilles. 

 French in Canada: Un entraînement soutenu peut faire des miracles. 

Many more variations existed. Consider another example in Spanish such as the following 

different translations or representations of the same text: 

 Spanish in Chile: Sin embargo, la degeneración de la capacidad intelectual puede 

prevenirse de verdad, incluso aunque no nos dediquemos a ejercicios 
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experimentales tan extremos. Como dice Lehrl, “cualquiera que esté interesado en 

cosas nuevas mantendrá la materia gris.” 

 Spanish in Spain (Castellano): La degeneración de la capacidad intelectual de 

todos modos se puede evitar, incluso sin darse el lujo de considerar el 

pensamiento como un ejercicio experimental extremo. Tal como lo señala Lehrl: 

“cualquiera que esté interesado en nuevas cosas mantendrá la materia gris en 

forma.” 

Learning the threshold using only one type of French or Spanish might not be as accurate 

for evaluation. Only a broader evaluation effort can tell.  

Negation as Its Own Special Case 

This case is for items where the minimum includes a negation. We only focus on explicit 

negations that are clearly modified by not. In our study we had no such items, but the approach 

we used will have to be updated to take care of, for instance, not less than average instead of less 

than average in the example in Table 1.  

All of the above issues can be seen by looking at the data, but some can be inferred from 

the hierarchy of clusters (ranked in order). On the one hand, all types of issues apply to all 

languages, but that is not the only thing involved. In some cases, the students’ responses can be 

clustered as similar across languages. For instance, in one of the items, many students 

responding in English and Japanese selected the same wrong response:  

a training session of as little as two hours improves the test results of older people. 

Sustained training can work wonders. He is now pressing ahead with intensive memory 

exerices with a group of elders in good health who are intending to compete next year 

against young memory whiz kids.  

The high-ranked clusters that we can perform over the proximity of responses to each other will 

confirm whether and how the rubrics can be refined. 
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Conclusion 

We used one sequence alignment technique in order to evaluate multilingual student 

responses in international assessment. We showed it is an enhancement of what already exists, 

that is, the symbolic Boolean logic rules implementation.  

In addition to automatic scoring, this solution plays an important role in clustering 

students’ responses; consequently, it has a nontrivial impact on the refinement of the items 

and/or their scoring guidelines. The strengths of such an approach are that (a) it is language-

independent, (b) it is adaptive, and, most importantly, (c) though designed for a specific problem, 

the proposed solution is general enough for any educational task that can be transformed into a 

sequential one even beyond text and speech applications. To name a few: It can be used for a set 

of actions expected from a student in simulations or learning trajectories as projected by a 

teacher, inside an intelligent tutoring system, or even in a game—or it can simply be used for a 

set of student clicks, button selections, or keyboard hits expected to reach a correct answer. This 

solution provides flexibility for existing automatic scoring techniques and potentially could 

provide more if coupled with statistical data mining techniques. The limitations of such an 

approach are that it considers the alphabet to be the graphemes without taking deeper linguistic 

features into account. Hence, a phenomenon like negation could be missed or needs a specific 

treatment by considering, for example, order and n consecutive graphemes as part of the 

alphabet.  

The LCS approach was only one possible solution or similarity measure and within this 

approach; there were many choice points that could lead to various interesting research studies, 

such as the choice of the normalized dissimilarity, the approach of collapsing the row of the 

(dis)similarity matrix, the selection of a threshold, and even, probably, weighing different 

graphemes differently. Many choice points could be refined by additional data evaluation.  

Our next steps will include trying several evaluation techniques, such as treating each 

language separately using bigger datasets and defining, comparing to a baseline, and considering 

additional attributes like the position of the characters in the passages. Also, this approach is 

being implemented operationally and an evaluation with more items and a larger number of 

responses will be available soon that will, empirically, help us in our measure selection. 

Furthermore, we need to conduct a comparative evaluation with a different alignment technique 

with various algorithms to find optimal alignments. These algorithms probably will be borrowed 
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from the field of bioinformatics—in particular, how to select an optimal alignment. Finally, it is 

important to note that the size of datasets in our case, as compared to big data tasks that exist in 

bioinformatics or natural language processing, is very small.  
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Notes 
1 We will not make a distinction between character-based, alphabet-based, abjad-based, 

syllable-based, abugida-based languages, and so forth. We will just use grapheme to 

denote the smallest unit. 

2 Proofs showing the correctness of such algorithms are not included in this document. 

3 A programming language in continuous development since 1987; its main author is Jan 

Wielmaker.  




